Kompleksowe rozwiązania regulacji przepływów powietrza w pomieszczeniach laboratoryjnych

SMAY
 SMAYLAB ${ }^{\varrho}$

SMAY Sp. z o.o. / ul. Ciepłownicza 29 / 31-587 Kraków tel. +48 126802080 / fax. +48 126802089 / e-mail: infodsmay.eu

SMAYLAB ${ }^{\circledR}$

Przeznaczenie

Zastosowanie rozwiązań SMAYLAB ${ }^{\circledR}$ stanowi uniwersalnạ propozycjẹ nadajạcą siẹ do pomieszczeń, gdzie wymagane jest utrzymanie odpowiedniej gradacji ciśnienia (nadciśnienia lub podciśnienia). Dziẹki połạczeniu produktów SMAY służących do regulacji przeptywów powietrza (RVP-R; RVP-P, RPP-R; RPP-P; KVR; VRS i VRRK) oraz zaimplementowaniu sprawdzonych technologii stosowanych w instalacjach laboratoryjnych opracowane zostało rozwiạzanie, które znajduje zastosowanie w każdej koncepcji regulacji przeptywów powietrza przyjẹtej przez projektanta.

W szczególności rozwiązania te znajdujạ zastosowanie w nastẹpujạcych typach pomieszczeń: pomieszczenia laboratoryjne, izolatki w szpitalach, sale operacyjne, pokoje zabiegowe itp., pomieszczenia produkcyjne, gdzie ze wzglẹdów na proces technologiczny musi być utrzymana odpowiednia klasa czystości (strefy GMP).

Budowa

Składowạ czéściạ rozwiązania jest system do regulacji przeptywu powietrza w oknie dygestorium w pełni zgodny z normạ PN-EN-14175 zapewniajạcy wysoki poziom bezpieczeństwa i komfortu dla użytkownika. System zapewnia utrzymanie założonej prẹdkości przepływu powietrza w oknie dygestorium niezależnie od stopnia jego otwarcia. Dodatkowo dziẹki zastosowaniu różnych ksztattów paneli monitorująco-sterujących jest możliwość wbudowania ich w ramy wiẹkszości dygestoriów dostẹpnych na rynku. System składa siẹ z regulatora VAV wykonanego ze stali nierdzewnej lub PPs z szybko działającym napędem, czujnika przeptywu powietrza, precyzyjnego potencjometrycznego miernika wysokości otwarcia okna dygestorium, mikrokontrolera oraz statycznego czujnika różnicy ciśnień a także panelu monitorująco-sterującego.

Proponowane systemy nadają siẹ do wszystkich rodzajów wyciạgów laboratoryjnych, dziẹki czemu można je bez problemu zainstalować w wyciagach nowych jak również doposażyć wyciagi już istniejące.

Funkcje

Funkcje jakie może spełniać system do regulacji przepływu powietrza do dygestoriów to:
sygnalizowanie stanów pracy dygestoriów (alarmy dźwiẹkowe i wizualne),
możliwość wyciszenia alarmów dźwiẹkowych przez operatora,
klawisz funkcyjny z włạcznikiem/wyłạcznikiem światła w dygestorium,
klawisz funkcyjny z włacznikiem/wytạcznikiem systemu regulacji,
wizualne ostrzeżenie o zbyt dużym otwarciu okna,
przycisk wymuszenia minimalnego lub maksymalnego przepływu powietrza,

- port seryjny służący do kalibracji wartości progowych przepływu,
- wyświetlenie prẹdkości lub strumienia objẹtościowego powietrza,
- możliwość komunikacji z centralnym systemem zarzạdzania obiektu (BMS).

Wykonania opcjonalne

W wykonaniu opcjonalnym dziẹki zastosowaniu zautomatyzowanego napędu okna dygestorium operator ma możliwość sterowania rẹcznego automatykạ otwierania i zamykania okna. Ponadto układ może zostać wyposażony w przełạcznik nożny w celu łatwego podniesienia okna w przypadku zajẹtości obu rạk. System w połạczeniu z systemem BMS budynku może w okresie dłuższej nieużywalności otwarte okna dygestoriów sprowadzić zdalnie do pozycji minimalnych generując tym samym dodatkowe oszczédności energii i gwarantując jednocześnie zachowanie wysokiego stopnia bezpieczeństwa i komfortu. Do zastosowań w środowiskach zagrożonych wybuchem EX proponowane są kompletne systemy regulacji przepływu zgodne z ATEX, Grupa II, Strefa 1,2,21 i 22.

BMS

Drugim niezwykle ważnym aspektem jest warunek kompleksowego zarzạdzania przepływem powietrza w obsługiwanym pomieszczeniu w celu utrzymania założonej różnicy ciśnień (nadciśnienia/podciśnienia). Proponowane rozwiązania SMAYLAB ${ }^{\oplus}$ potrafia, w sposób inteligentny zarzạdzać strumieniami powietrza nawiewanego i wyciąganego w celu utrzymania założonych parametrów pracy - utrzymanie nadciśnienia lub podciśnienia w obsługiwanym pomieszczeniu oraz monitorowanie i sterowanie temperatura, i wilgotnością, a także potrafią nadzorować inne składowe czẹści systemu lub czynniki zewnẹtrzne takie jaknp. stan zabrudzenia filtrów, oświetlenie pomieszczenia, generowanie alarmów itd.

Prostota działania

Systemy laboratoryjne SMAYLAB ${ }^{\oplus}$ przeznaczone sạ do pomieszczeń, gdzie bẹdạ utrzymywane nadciśnienia (pomieszczenia .,czyste") oraz podciśnienia (pomieszczenia „brudne"), w których istnieje zagrożenie wydostania się na zewnątrz zanieczyszczeń biologicznych, chemicznych czy mechanicznych - zarazki chorobotwórcze, pyty, pary, mieszaniny gazów, itp.
Układ nadciśnieniowy (pomieszczenie .,czyste") jest tym, który jest stosowany w celu zabezpieczenia pomieszczeń przed wnikniẹciem zanieczyszczeń mechanicznych, biologicznych lub chemicznych. Zwykle tego typu instalacje sa, stosowane w szpitalach (izolatki, pokoje operacyjne i zabiegowe), w laboratoriach oraz w zakładach produkcyjnych (np. zakłady farmaceutyczne, fabryki kosmetyków).
Pomieszczenia dla których stosuje siẹ układy z podciśnieniem (pomieszczenia „brudne") maja na celu zapobieżenie wydostawaniu siẹ na zewnątrz do pomieszczeń przyległych wszelkiego rodzaju niebezpiecznych substancji.

Modułowość i komplementarność

System SMAYLAB ${ }^{\oplus}$ ze wzglẹdu na swojạ modułowạ konstrukcję jest systemem na tyle elastycznym, iż może być zastosowany w każdym rozwiązaniu zaproponowanym przez projektanta. Dodatkowo firma nasza służy Państwu pełnạ wspótpracą od samego poczạtku tzn. wyboru koncepcji systemu, jego opracowania jak również uruchomienia i kalibracji oraz przeszkoleniu użytkowników. Zapewniamy serwis gwarancyjny i pogwarancyjny.

Modułowość i komplementarność

Poniżej zostały przedstawione schematy obrazujące przykładowe rozwiązania architektury systemu SMAYLAB ${ }^{\oplus}$.
Na schemacie nr 1 przedstawiony jest system obrazujạcy rozwiązanie układów regulacji przepływem powietrza w dygestoriach, odciạach miejscowych, szafach na chemikalia, odciagach ramiennych przy założeniu dowolnej liczby tych urzạdzeń. W celu utrzymania żądanej wielkości podciśnienia w pomieszczeniu sterownik pomieszczeniowy sumuje ilość powietrza usuwanego z pomieszczenia i tak steruje praca regulatorów VAV na nawiewie i wywiewie z pomieszczenia, że założona wartość ciśnienia jest utrzymywana gwarantujạc tym samym wysoki stopień bezpieczeństwa i komfortu dla użytkowników. Dodatkowo system może monitorować ciśnienie w pomieszczeniu, temperaturẹ, wilgotność a także ilość wymian powietrza. Ponadto system posiada opcję monitorowania innych urządzeń w obstugiwanym pomieszczeniu jeśli zachodzi taka konieczność. Rozwiązanie takie może pracować w sposób autonomiczny lub może zostać zintegrowane z systemem BMS obiektu.
Schemat nr 2 przedstawia również pomieszczenie laboratoryjne posiadające dygestoria, odciągi miejscowe, odciạgi z szaf oraz odciągi ramienne. W rozwiązaniu tym podciśnienie utrzymywane jest poprzez regulacje nawiewu i wywiewu z pomieszczenia dziẹki zastosowaniu pomieszczeniowych regulatorów ciśnienia SMLS2010. Regulatory te odczytując fizyczną wartość różnicy ciśnienia obsługiwanego pomieszczenia do strefy przyległej np. korytarza wysterowuja praca, regulatorów VAV na nawiewie i wywiewie z pomieszczenia w taki sposób, aby utrzymać założone parametry.

SMAYLAB ${ }^{\circledR}$

Modutowość i komplementarność

Dziẹki temu rozwiązaniu system przystosowuje siẹ samodzielnie do zmieniających siẹ warunków związanych z praca, wyciạgów technologicznych w obsługiwanym pomieszczeniu. Rozwiązanie takie gwarantuje wysoki stopień bezpieczeństwa i zwiẹksza komfort pracy. Rekonfiguracja (dodanie lub usuniẹcie) sprzẹtu laboratoryjnego nie powinno stanowić problemu w przypadku zastosowania tego typu układu. Rozwiązanie takie może pracować jako układ niezależny lub może zostać zintegrowane z systemem BMS obiektu. Istnieje możliwość monitorowania temperatury, wilgotności oraz innych parametrów w obsługiwanym pomieszczeniu.

Schemat nr 3 przedstawia izolatke, szpitalną. W rozwiązaniu tym zastosowano pomieszczeniowy regulator SMLS-2010 do sterowania praca regulatorów VAV na instalacji nawiewnej i wywiewnej obsługujạcej dane pomieszczenie. Dzięki zastosowaniu tego typu rozwiązania operator ma możliwość zdefiniowania trybu pracy układu (podciśnienie/nadciśnienie/brak izolacyjności) oraz może określić czas zwłoki zadziałania alarmów, a także może określić graniczne wielkości ciśnienia w obsługiwanym pomieszczeniu. Po odpowiednim przygotowaniu (np. sterylizacji) pomieszczenia można bardzo łatwo zmienić tryb użytkowania np. ze strefy utrzymywanej w podciśnieniu (pomieszczenie .,brudne") na nadciśnienie (pomieszczenie ..czyste"). Dziẹki zastosowaniu regulatora SMLS-2010 architektura systemu pozostaje uproszczona w stosunku do konkurencyjnych rozwiązań, a jednocześnie funkcje komfortu i bezpieczeństwa są w pełni zachowane.

Rozwiązania SMAYLAB ${ }^{\oplus}$ ze wzglẹdu prosty i przyjazny dla użytkownika sposób sterowania moga zostać szybko dostosowane do zmian w konfiguracji sprzẹtu laboratoryjnego. Pokazane na schematach rozwiązania architektury systemu stanowiạ tylko przykład, jak może zostać zbudowany układ przy użyciu elementów składowych systemu SMAYLAB ${ }^{\oplus}$.

SMAYLAB ${ }^{\circledR}$ jest to doskonała propozycja regulacji przepływów powietrza w pomieszczeniach laboratoryjnych dostosowana do indywidualnych wymagań użytkownika pochodzạca od jednego producenta.

